Find the exact value of the function without using a calculator.

1.
$$\tan \frac{14\pi}{6} =$$

2.
$$\cos 600^{\circ} =$$

$$3. \qquad \sin \frac{19\pi}{4} =$$

4.
$$\csc 540^{\circ} =$$

5.
$$\sec (-30)^{\circ} =$$

6.
$$\cot \frac{-\pi}{3} =$$

7.
$$\cos{(-210)^{\circ}} =$$

8.
$$\sin \frac{-4\pi}{3} =$$

Find the exact value of the expression. Give the answer in both degrees and radians.

1.
$$\sin^{-1}\frac{1}{2}$$
 =

2.
$$\cos^{-1} \frac{-\sqrt{3}}{2} =$$

3.
$$tan^{-1}(1) =$$

4.
$$\tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) =$$

5.
$$\cos^{-1}\left(\frac{1}{2}\right) =$$

$$6. \qquad \sin^{-1}\left(\frac{-\sqrt{3}}{2}\right) =$$

Solve each equation between $0 \le \theta < 360$ or $0 \le \theta < 2\pi$

$$9. \qquad \sqrt{2}\sin\theta - 1 = 0$$

10.
$$\tan^2 \theta + 2 \tan \theta + 1 = 0$$

11.
$$-2\sin\theta = 1$$

12.
$$\sqrt{3} \tan(\theta) + 1 = 2$$

13.
$$\cos\left(\theta + \frac{\pi}{6}\right) = \frac{1}{2}$$

1. Given that $\csc\theta = \frac{\sqrt{6}}{2}$, use definitions or identities to find the exact value of the remaining five trigonometric functions of the acute angle θ found in quadrant 1.

$$\sin \theta =$$

$$\csc \theta =$$

$$\cos \theta =$$

$$\sec \theta =$$

$$\tan \theta =$$

$$\cot \theta =$$

2. Find the six trigonometric functions given the point (-7, -9)

$$\sin \theta =$$

$$csc \theta =$$

$$\cos \theta =$$

$$\sec \theta =$$

$$\tan \theta =$$

$$\cot \theta =$$

Given the following information, find the exact value of the trigonometric function

3.
$$\csc \theta = \frac{7}{4}$$
 and $\tan \theta < 0$ find $\cos \theta$

$$csc θ = \frac{7}{4}$$
 and $tan θ < 0$ find $cos θ$ 4. $sec θ = \frac{9}{-2}$ and $tan θ > 0$ find $cot θ$

5.
$$\cos \theta = \frac{2}{7}$$
 and and $\cot > 0$ find $\tan \theta$

Use a calculator to find each value. Round your answer to 3 decimal places then draw the triangle that corresponds to value given to you by the calculator.

7.
$$tan^{-1}(.321) =$$

8. A 32-foot ladder is leaning against the side of a building. If the ladder makes an angle of elevation of 20° with the ground, how far is the bottom of the ladder from the base of the building? Round your answer to the hundredths place.

Solve the equation between $0 \le \theta < 360$. Round your answers to the nearest tenth.

9.
$$\sin \theta = .364$$

Solve the equation between $0 \le \theta < 360$ by finding the exact angles.

$$10. \qquad \cos 2\theta = \frac{\sqrt{3}}{2}$$